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More specifically, each pi is a positive integer and satisfies the condition
that there does not exist an integer x , 1 < x < p, such that pi/x is an
integer. Also, there are no prime numbers less than or equal to n that

are not in the set primes.

In developing a solution, the following observations can be made. First,
2 is the first prime number and the only even prime. All other primes are
odd and therefore it is necessary to test only odd numbers as additional
prime number candidates. Second, any number that has a factor has a prime
factor; therefore, it is necessary to divide the current candidate only by the
primes already calculated. This means, however, that the primes must be

saved as they are calculated.

In the specifications, primes will be treated as a set, a convenient
choice for high level specification, but implemented as an array. The
necessary properties that the implementation is valid could be stated and

proved but is irrelevant to the purposes of this paper.

3.3 Axiomatic Derivation of Primes

In the axiomatic model a program to be derived always starts out in the

form

{pr} s {(q}

where P gives the required assumptions on the input and Q the intended ;
function to be computed by S. Thus, the primes problem can be stated

(3.3.1) {2 <nl s {primes = [[p | p <n, p is prime]] }.

In order to develop an axiomatic solution to this problem, definition of

the set of primes is needed. In order to distinguish program variables from




tunction definitions, the latter will be underlined. Thus, the set of

primes may be defined:

I

(3.3.2) rimes (K) empty 1f Ko< 2

primes (K-1) U [[K | isprime (K)]] otherwise

€3.3.3) isprime (K) (¥p) (p ¢ primes (K-1) - K rem p # 0)
Using these definitions, the primes problem can be restated as:

(3.3.4) {n > 2} S ({primes = primes (n)!}.

The program can be refined by decomposing it into a sequence using axiom
A2 in order to compute the even and odd primes separately. Then using axiom
Al on the first of the two statements, we arrive at the following program:
(3.3.5) {n > 2}

primes (1) := 2; size := 1;

!

{primes = primes (2)]

S1

"

{primes

primes (n)}

The program part S1 computes only odd primes; furthermore, S1 must
contain a loop. Following [Dijkstra, 1976] and [Gishen and Noonan, 1978],
the necessary loop invariant is developed. Note that for a given y > 3,
if y 1is even then primes (y) = primes (y-1). Since n may be either even

or odd, the following loop invariant is used:

{primes = primes (y~1), odd (y), y < n+2}.

Thus, the loop (S1) can be further refined using axioms A2, Al, and A3 to
arrive at:

(3.3.6) {primes = primes (2)!




{primes = primes (y-1), odd (y), y =~ u + 2|
while y < n do

§2
od

(primes = primes (n)!

Note that proving the correctness of this elaboration requires the

proot of the following lemmas:

1. primes = primes (2) * (primes = primes (3-1), odd (3),
3 <n+2)

The proof 1s obvious since {t {8 known that n - 2.

2. (primes = primes (y-1), odd (y), y ~n+ 2, y » n)
» primes = primes (n).
Two cases arise. If n {s even, then y = n + 1 and
primes = primes ((n + 1) - 1) = primes (n). If n {is odd,
then y = n + 2 and
primes = nrimes ((n + 2) - 1)
= primes (n + 1)
= primes (n) since n + 1 {s even and

hence, not prime.

In a similar fashion, the code shown below is produced proceeding
backward through $2:
(3.3.7) {primes = primes (y-1), odd (y), y < n]
tsprime := true ; § := 2 ;
{primes = primes (y-1), odd (y), y * nl

faprime = (¥K) (1<K<j * y rem primes (K) ¢ 0)




while J ~ SIZE and isprime do
fsprime := (y rem primes (j)) # 0) ;
R TR TR
od 3
{primes = primes (y-1), odd (y), y ~ n, {sprime =

Lsprime (y) !

if  isprime then
sfze := gize + 1 ;
primes (size) 1=y
fL 3
{primes = primes (y+l) = primes (y), odd (y), y : nl
Y imoy g
{primes = primes (y-1), odd (y), y = n + 2}
The tinal program with its intermediate assertions as documentation is shown

in Figure 3.3.

}.4 Functional Derivatfon of Primes

In the functional approach, the problem must be specified as a function
trom a set of {nputs to a set ot outputs. As before, this can be stated:

(3.4.1) primes =[[p | p < n, p is prime])

As with the previous solution, the even and odd primes are computed
separately and the prime number candidates are divided only by prime
numbers.  Under these conditions, the functional specifications may be ?
rewritten as:

(3.4.2) primes = [[2]] U oddprimes (3, n)

using the functions:
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FIGURE 3.3

AXIOMATIC SOLUTION OF PRIMES PROBLEM

primes (1) := 2 ; size := 1 ;
{primes = primes (2)}
Yy = 33
{primes = primes (y-1), odd (y), y = n + 2}
while y < n do
isprime i= true ; j := 2 ;
primes = primes (y-1), odd (y), y ~ n ,
isprime = (¥K) (1 < K ~ j > y rem primes (K) # 0)|
while j < size and isprime do
isprime := (y rem primes (j) # 0) ;
J =3 +1
od ;
{primes = primes (y - 1), odd (y), vy < n,
isprime = isprime (y))
if disprime then
size = size + 1 ;
primes (size) := y
¥
{primes = primes (y) = primes (y + 1), odd (y), y < nl
b AR R L
{primes = primes (y - 1), odd (y), y < n + 2}
od

{primes = primes (n)}
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oddprimes (2,u) = [[% [ isprime (2)]] U oddprimes (&+2,u)

if L <
= emetz .Lf; g > u
isprime (x) = (¥ p) (p ¢« oddprimes (3, p - 1) ~»

x rem p # 0)

The functional specification (3.4.2) can be decomposed into two functions,
the first of which initializes the basic data and the second defines the
iteration that does the bulk of the calculation.

(3.4.3) [ primes :=([{2]] U oddprimes (3, nin) ]
primes (1) := 2 ; size :=1 ;
Vit s

{primes := primes1n U oddprimes (yin’ nin)]

The implicit loop in computing odd primes can now be made explicit:
(3.4.4) [primes := primesin U oddprimes (yin’ nin)]
while y s n do
[primes := prlmes1n U “yin | isprime (yin)n
§ ey, )

od

As with all expansions, the associated lemmas given in Table 3.2 must be
proven. Since this refinement is not obvious, the expansion is verified.

Since the refinement is a loop, three lemmas must be proved.

1. Does the loop terminate? Yes, since y 1is incremented by 2

for each iteration and is bounded above.

2. Whenever the loop test 1is true (y < n), is the loop body

composed with the intended function of the loop equivalent to
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the intended function of the loop. This is demonstrated using

a trace table.

step primes e
initially primeain X
loop body primes1n U [[yin | isprime (yin)n T + 2
loop function primesin U [[ym [ isprime (yin)n

U oddprimes (ym + 2, nin) -

= primesin U oddprimes (yin’ nin)

Since the final value for primes is the same as the intended function

of (3.4.4), this case 1is proved.

I Whenever y > n, is the intended function of the loop an
identity? Yes, since y > n, the set oddprimes (yin’ n) is empty.
Thus,

primes = primes1n s

and this case 1s proved.

Although the correctness of each successive expansion is not verified, it

should be clear that it is both possible and often helpful to do so.

The solution process is continued by expanding the loop body given in
(3.4.4).
(3.4.5)  [primes := primes U [[yin | isprime (C8) | I
y =y, *2]
[isprime := isprime (yin)]
if disprime then

slze := size + 1 ;

primes (size) := y




y := y+ 2
The final expansfon is the loop necessary to calculate isprime.

(3.4.6) [isprime := isprime (yin)]
isprime := true ; g w2
while J < size and isprime do
isprime := (y rem primes (j) # 0) ;
ji= 341

od

The complete program with its intermediate functions as documentation

is given in Figure 3.4.
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FIGURE 3.4

FUNCTIONAL SOLUTION OF PRIMES PROBLEM ;

[primes :=[[2]] U oddprimes (3, n)]

primes (1) := 2 ; size := 1 ;

VAL S

[primes := primes U oddprimes (yin - nin)]

in
while y <n do
v |
[primes : primesin U Hyin | isprime (yin)n

y = + 2]

Yin
[isprime := igprime (yin)]
isprime := true ; F a2
while j - size and isprime do
isprime := (y rem primes (j)
¢ 0) ;
g i e
od ;
if disprime then

size := size + 1 ;

primes (size) :=y

y = v+ 2
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4. COMPARISON BETWEEN THE TWO MODELS

In what follows, some of the similarities and differences between the
two models and their associated correctness and derivation approaches are

discussed.

4.1 Similarities

Formal Models of Individual Program Constructs - Both approaches are

based upon formal, tractable mathematical models for specific sets of program
constructs in isolation (not as operational models of the interrelationships
of program constructs at runtime). The models for the individual counstructs
give an indication of the complexity of the semantics of the constructs and
thus yield a good motivation for the choice of a set of programming language
constructs for use in writing provably correct programs. They both deal with
partial correctness only; proof of termination is a separate issue and

identical techuiques can be used in both models.

Stepwise Derivation and Correctness - Rules for derivation and
correctness are based on the application of the particular constructs as they
are decomposed in the development process and composed in the abstraciion
process. The techniques are applicable in a stepwise manner, at various
levels in the correctness and development process, dealing with only small
segments of code, expanding subspecifications in a step by step manner. In
this way, they also make excellent documentation techniques, each subspecifi-
cation being useful as a high level comment about the code expanded below

it.

Invention - As methodologies for proving correctness, both approaches

require some invention in the creation of the loop invariant and the intended
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loop function. If these are not given, there is no practical way of
generating them which is guaranteed to succeed in a reasonable amount of
time. A great deal of work has been done on heuristics for finding loop
invariants [Wegbreit, 1974). Some results have recently been published in

generating intended loop functions [Blikle, 1977].

4.2 Differences

Underlying Mathematics - The underlying mathematics of cach of the

models is different. The axiomatic approach uses the predicate calculus
while the functional approach uses the concepts of function composition
and equivalence. Consider the rules for correctness given in Section 2.
One set of rules uses logical consequence au. the logical operators of
the predicate calculus, while the other uses function composition

(decomposition for derivation) and function equivalence.

Statement of the Specification - The functional approach states the

specifications and subspecifications as functions from the input value space
to the output value space. It is a mathematical function in the strict
sense. The axiomatic approach organizes the specifications and subspecifi-
cations into Boolean functions represented by assertions on program variables
where the input assertion is a set of status relations among the input
program variables and the output assertion yields true or false depending
upon whether the output variables satisfy the appropriate intended function.

In {llustration, consider the following simple program:

The format for the axiomatic and functional approaches are given below:
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{ true } [T = 2]

I =1 [T =1]

{1 =1} I := 1

I =1 +1 [I = Iin + 1]
{1 = 2} I :=1+1

In the axiomatic approach, each assertion shows what is true about the
state of the variables at the particular point in the program where the
assertion appears. The assertion is given in terms of a relationship between
the variables involved, e.g., {I = 1}. 1In the functional approach, the
function defines the effect a particular set of statements has with respect
to its set of input and output values, e.g., the statement I :=1 + 1 is
defined by the function [I = L. * 1] (shorthand for f = [[ ((Iin’ Ly
I= 11n + 1]] ) and this is true independent of where that statement is
imbedded in the program. It defines the effect of that statement in a

variable-free way, i.e., I represents the output value space of the function

and [in and 1 represent the input value space.

The variable free aspect of the functional model versus the variable
dependent aspect of the axiomatic model is demonstrated by their model of the
assignment statement. Consider the axiomatic rule for assignment given in
Figure 2.2, In the assignment x := f, if f is any expression not involving
the program variable x then there can be no way for the post assertion Q
to capture the old value of x. Thus, in the multiplication example, in
order to assert that Z = A * B, neither of the values of the input variables
A or B can be destrcyed. Since the algorithm used destroys the value of B,

a copy of this value (Y) must be made in order to prove correctness. This is

so the relationship can be written in an invariant way, even though the value
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of Y is changing dynamically. The output assertion requires the variable B

be unchanged as a reference point.

In contrast, the functional model handles assignment 'naturally" since
a function, like an assignment, is a mapping of input values to output
values. The functional specification is not in terms of the variables at
all but the values of the variables; i.e., Z and Zin represent different
value sets of the same program variable, at point of input to the program
segment specified and at point of exit. The function gives the relationship

between the two value sets.

Scope of Specification - A functional specification defines the state

of affairs of only the program part for which it is the intended function.

For example, the function [ I = I, + 1 ] describes only the behavior of the

in
statement I := I + 1. However, in the axiomatic model, the assertion
{I = 2} depends not only on the statement I := I + 1 but also on the

previous history of I.

Any change in a program not affecting a particular program segment
implies that the functional specification for the segment need not be changed
and no new proof of functional correctness is required for that segment. In
addition, a different implementation of a functional specification can be
substituted without changing any proofs of correctness in the remainder of

the program.

This cannot be done in the axiomatic model. An assertion about a
variable depends on the history of the use of that variable and on its inter-
dependence on other variables. In addition, assertions contain global

information about nonlocally affected variables. Thus changes in a program
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affecting a particular variable are not necessarily independent of the
remainder of the program and will usually require new procfs of all

assertions containing that variable.

Bottom Up Correctness - An added effect of this difference is that

given a program without any functional specifications, the intended function
for any prime program can be defined depending only on the subhierarchy of
the prime program, i.e., functional correctness can be approached bottom up.
Suppose the functional correctness of the program in Figurel4.1 is to be

proved bottom up. The functional equivalent of the loop body is

[ I := I1n + 1 ]

and the proof is trivial. The functional equivalent of the loop in

[ I := max (Iin’ Nin) ]
or
b F oo Nin if I1n < Nin
L BTt s

The proof that the loop is equivalent to the above function requires proving

that the loop body 1is equivalent to its function.

Now consider the case for the axiomatic method; given

(P} I :=1+1 (Q!}

P and Q must be found. Given Q, P can b. found from Q via the assignment
axiom (Al). Unfortunately, there is no way to determine Q; in a sense

Q must contain a great deal of historical information about the use of the

T —



FIGURE 4.1

PROGRAM TO COMPUTE 1 = N
{N 2 0}
I = 0
{I ' < "N}
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variable I as well as icts relationship to the nonlocally referenced N.
Suppose, however, the straightforward approach adopted for the functional

method was tried:

{true! I s= T+ 1 I =7 + 1},
e in

However, given the invariant for the loop {I < N}, a proof of correctness

requires showing

{P A B} I I +1 {P}

or

{1 2 B T < KN Toam Tt §5 s WEs

Thus, without considering the loop as a whole, there is no practical way of
determining the correct loop body post-condition, that is, there is no
practical way to assure that the choice of the post-condition is sufficiently

strong to be of value in the proof of correctness of the loop body.

In the functional approach, any such bottom-up process is guaranteed
to be relevant to the larger construct. In fact, in the program in Figure
4.1, given the program as a whole, the intended function of the loop is

actually

§ RN o S NS e

Note that this is weaker than the one found in the bottom-up process. This
is necessarily so, since the top-down process can consider only the relevant

input domain (N > 0) instead of theentire input domain (N an integer).

However, it should be noted that even in the functional model, top-down

proofs are easier. Because the intended function is more specific than the
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functional equivalent of the program, the algebraic manfpulatfions are greatly
simplified in proving the necessary functional equivalences. For example,
consider the problem of finding the intended function of a binary search

program {f you do not know the {nput array is ordered.

4.3 Interrelationship

There is an futeresting conmection between the two models. The intended
function of a loop may be easily converted to a loop {uvariant; namely,
f (x) = (xin) is the loop invariant [Mills, 1975]. 1n the multiplication
example, the functional specification for the loop I8 Z := Zin + Afn * Bin

thus the loop tavariant is

f (x) = f (xin)

Z 4+ AXB=Zin + Ain * Bin

2 = 2in + Aln * Bin = A * B
Z = Zin + A * (Bin - B), since A = Ain
Z = A X (Bin - B), gince Zin = 0 from the inftial assertion

and the composition of the
statements preceding the

loop

In the program in Figure 2.3, the varfable B plays the role of Bin and the

variable Y plays the role of B,

. I CONCLUSION

It should be clear from the previous discussion that hoth models yield
a methodology of program derivation and correctness. The approaches have a

great deal {n common but they arve dfffervent; the axtomatic approach emphasizes
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the relations between the variables and the functional approach emphasizes
the independent variable-free functions performed by the various program

subpieces.

It is not clear which approach is more effective in an operational
environment. It may, in fact depend upon the particular environment, and
the problems that arise. Enough is still not known about the kinds of errors
designers and programmers make in different environments and therefore whether
a varilable-free or variable-dependent approach is best. One possibility is
for the developer to be aware of both and use both in the development of
programs. Certainly, one could be used in formally deriving the program and
the other as a commenting aid; e.g., use the functional approach in the
development to aid in the partitioning and modularization of the independent
program parts and use assertions as comments to aid the programmer in under-
standing the relationships between the variables. 1In either case the models

appear to complement each other in the insight they provide to the developer.
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